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Abstract. High-field transport of electrons in semiconductor superlattices under intense parallel
magnetic and time-dependent electric fields is investigated within a quantum-kinetic approach.
Intra-collisional field effects of all fields are taken into account. In a biased superlattice subject to an
intense radiation field of terahertz frequency, cyclotron–Stark–phonon–photon current resonances
are predicted to occur for particular ratios of the Bloch(�dc), cyclotron (ωc), and terahertz
frequencies(ω). Under strong irradiation, pronounced maxima appear at resonance positions
given by l�dc + nωc + mω ± ω0 = 0, wherel, n,m are integers andω0 the phonon frequency.
Electro-phonon resonances are enhanced by a magnetic field but strongly weakened by an intense
terahertz electric field.

1. Introduction

A strong electric field applied parallel to the superlattice (SL) axis localizes electronic states
along the field direction into Wannier–Stark (WS) states, whose spatial extent is inversely pro-
portional to the field strength. If the level broadening ¯h/τdc is smaller than the spacingeEdcd
(whereEdc is the dc electric field andd the SL period) between the rungs of the WS ladder, the
current proceeds by inelastic hopping between WS states belonging to neighbouring SL wells.
The increase of the degree of localization with the electric field gives rise to negative differential
conductance (NDC) in the current–voltage (I–V ) characteristic. It has been predicted [1–3]
that WS quantization leads to electro-phonon resonances atleEdcd = h̄ω0 (whereω0 is the
frequency of polar-optical phonons andl an integer) giving rise to a non-monotonicI–V
dependence. Such resonances are greatly enhanced by a parallel magnetic field [4], which
quantizes the lateral electron motion. If both fields are applied, the energy spectrum becomes
completely discrete. Related cyclotron–Stark–phonon resonances have been studied both
experimentally [5–10] and theoretically [4,11–13].

An ac field in the terahertz (THz) domain, also applied parallel to the SL axis, opens up a
second transport channel due to delocalization of carriers in the irradiation field accompanied
by resonant photon absorption. The radiation field can suppress the formation of field domains
and can thus contribute to a stabilization of theI–V characteristics in the NDC regime. Under
the condition that Bloch oscillations interfere resonantly with the THz field (�dc = kω, where
�dc = eEdcd/h̄ is the Bloch frequency,k any integer, andω the frequency of the THz
field), carrier motion against the field direction becomes resonant by absorbing the energy of
photons [14]. This may lead to an absolute negative current as has been observed in recent
experiments [15–18]. Such resonances between Bloch oscillations and the THz field have been
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the subject of intense experimental and theoretical investigations. An interesting open question
concerns the influence of the radiation field on the quantum transport in semiconductor SLs.
It is assumed that an ac field affects current anomalies due to resonances stemming from the
quantizing dc electric and magnetic fields as well as polar-optical phonons. More importantly,
one might expect additional peaks to emerge at the positionsl�dc+nωc+mω±ω0 = 0 (where
ωc is the cyclotron frequency, andl, n, andm are integers) when the SL is exposed to an intense
radiation field of THz frequency. These cyclotron–Stark–phonon–photon (CSPP) resonances
group round the cyclotron energy or the energy of polar-optical phonons well beyond the
field regime, where resonances between Bloch oscillations and the radiation field appear (at
�dc = kω). It is the main objective of our paper to investigate these new quantum effects in
the SL transport.

Most theoretical studies of the SL miniband transport under THz irradiation were
essentially one-dimensional in nature and based on the relaxation-time approximation, in
which the equilibrium distribution function was introduced [19–26]. This approach as well
as calculations using balance equations [27–29] cannot take into account quantum effects
associated with the WS localization and the related current anomalies. This refers also
to calculations [30, 31] using the model of sequential tunnelling together with the Tien–
Gordon [32] or Tucker [33] expression for the ac current density. In the literature, there
have appeared only few studies [34] of quantum effects in the SL transport under a radiation
field.

We will treat the carrier transport in a SL under the influence of parallel electric and
magnetic fields applied perpendicular to the SL layers in the WS and Landau quantized regime.
The magnetic field enhances electro-phonon resonances appreciably and leads to additional
magnetic-field-induced resonances. The current density is calculated within a microscopic
quantum-kinetic approach that takes into account the heating of the lateral electron motion.
Intra-collisional field effects (ICFEs) of all fields involved are considered. This allows a
systematic study of CSPP resonances and the influence of the THz field on current anomalies.

2. The equation for the current density

A description of the field-mediated localization of carrier states requires an exact treatment of
the external electric and magnetic fields. Considering the symmetry properties of correlation
functions within the Wigner representation, a quantum-kinetic equation for the electron
distribution function has been derived in the literature [35] for spatially homogeneous systems
under the influence of electric and magnetic fields. This approach has been extended to account
for an additional radiation field [34]. When the carrier density is small and electrons travel
essentially only in the lowest miniband under the influence of electric and magnetic fields
applied parallel to the SL axis, the time-dependent distribution functionf (k|t) is calculated
from [14]

∂f (k|t)
∂t

+
eEz(t)

h̄

∂f (k|t)
∂kz

=
∑
k′

∫ t

t0

dt ′ f (k′|t ′)W(k′,k|t ′, t) (1)

where

Ez(t) = Edc +Eac cosωt

is the total time-dependent electric field. The Wigner-transformed scattering probability
W(k′,k|t ′, t) comprises scattering-in and scattering-out contributions [35] arising, e.g., from
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the emission or absorption of polar-optical phonons [1] within the SL:

W(k′,k|t ′, t) = 4

h̄2

∑
q,λ

|Mqλ|2|g(qz)|2 Re
[
(Nqλ + 1)e−iωqλ(t−t ′) +Nqλe

iωqλ(t−t ′)
]

×
{
P

(
k′ +

q

2
,k − q

2
, q

∣∣∣∣t ′, t)− P(k′ + q2,k +
q

2
, q

∣∣∣∣t ′, t)}. (2)

Mqλ is the electron–phonon coupling constant for phonons of wave vectorq in branchλ. g(qz)
is the form factor of the SL miniband calculated in the extreme tight-binding limit [36]. We
use the simple bulk-phonon model because we think that besides the zone-folding effect most
details of the electron–phonon interaction in a SL are not of great relevance for the high-field
transport. In equation (2),Nqλ denotes the equilibrium phonon distribution function andωqλ
the phonon frequency. The ICFEs of all fields are included in the time-dependent Green’s
function [14] (see also reference [35,37]):

P(k′,k, q|t ′, t) = exp

{
− i

h̄

∫ t−t ′

0
dt ′′

[
ε

(
k′ +

q

2
+
e

h̄

∫ t ′+t ′′

t ′
dτ E(τ ) +A(i∇k′)

)

− ε

(
k′ − q

2
+
e

h̄

∫ t ′+t ′′

t ′
dτ E(τ )−A(i∇k′)

)]}
δ
k′,k+(e/h̄)

∫ t ′
t

dτ E(τ )
(3)

which expresses the fact that in strong electric fields neither the quasi-momentumk nor the
energy are conserved.A(k) is the vector potential of the magnetic field in the symmetric
gauge. The band structureε(k) = h̄2k2

⊥/2m
∗ + 1(1− coskzd)/2 of the lowest miniband

is non-parabolic along the SL axis and describes electrons moving freely with the transverse
quasi-momentum ¯hk⊥ and the effective massm∗ within the SL wells. 1 is the miniband
width. A kinetic equation of the form (1) to (3) has also been derived using non-equilibrium
Green functions in [38]. The authors of that paper obtained a similar result with the essential
difference that in their approach the quasi-momentum conservation remained incorrectly intact.

In our derivation of a final kinetic equation we will progressively employ the discrete
nature of the underlying energy spectrum. For a sinusoidal ac electric field with a frequency
ω, the distribution function is periodic in time (f (k|t + 2π/ω) = f (k|t)). It is, therefore,
convenient to perform a Fourier transformation

f (k|t) =
∞∑

m=−∞
eimωtfm(k). (4)

According to equation (1) the Fourier coefficientsfm(k) obey the equation

imωfm(k) +
eEdc

h̄

∂fm(k)

∂kz
+
eEac

2h̄

(
∂fm+1(k)

∂kz
+
∂fm−1(k)

∂kz

)
=
∑
k′

∑
m′
fm′(k

′)Wm′m(k
′,k)

(5)

where the field-dependent matrix elements of the collision integral are given by

Wm′m(k
′,k) = ω

2π

∫ 2π/ω

0
dt ei(m′−m)ωt

∫ ∞
0

dt ′ e−im′ωt ′W(k′,k, t − t ′, t). (6)

In the derivation of equation (6), we assumed that the external fields had been switched on at a
timet0→−∞. For the alignment of the electric and magnetic fields considered, parallel to the
SL axis, the lateral electron motion is spherically symmetric, i.e. ,fm(k) = fm(|k⊥|, kz). We
will conveniently employ also another symmetry property of the system, namely the periodicity
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of the distribution function [1] along the field direction (fm(k⊥, kz +2π/d) = fm(k⊥, kz)). All
of these symmetries are accounted for in the followingansatzfor the distribution function [4]:

fm(k) = 2πl2Bnse
−k2
⊥l

2
B

∞∑
n=0

(−1)nLn(2k
2
⊥l

2
B)

∞∑
l=−∞

eilkzdf lmn (7)

wherelB is the magnetic length,ns the electron sheet density, andLn are Laguerre polynomials.
As a consequence of charge conservation, the unknown numbersf lmn satisfy the normalization
condition

∞∑
n=0

f 0
0n = 1 (8)

which guarantees that the homogeneous set of kinetic equations (5) has a unique non-trivial
solution. To elucidate the main physical aspects characterizing CSPP resonances in the SL
transport, the details of the screened electron–phonon coupling matrix elements are probably
not of great relevance. Therefore, we will avoid complications arising from the momentum
integrals in equation (2) by considering constant matrix elements and dispersionless optical
phonons:

|Mqλ|2|g(qz)|2→ ω2
00. (9)

Here0 is the coupling constant. Inserting theansatz(7) into equation (5) and calculating the
integrals over the transverse momenta [4,14], we obtain

(imω + il�dc)f
l
mn +

i

2
l�ac(f

l
m−1n + f lm+1n) = P lmn

= 2ω2
00

πh̄2l2Bd

∞∑
n′=0

∞∑
l′,m′=−∞

(
d

2π

)2 ∫ 2π/d

0
dkz dk′z ei(l′k′z−lkz)d

× ω

2π

∫ 2π/ω

0
dt ei(m′−m)ωt

∫ ∞
0

dt ′ e−st
′−im′ωt ′

×
{
f l
′
m′n′ Re

[
8(t ′)eiωct ′(n′−n)Pz−(k′z, kz|t − t ′, t)

]
− f l′m′n Re

[
8(t ′)eiωct ′(n−n′)Pz+(k′z, kz|t − t ′, t)

] }
(10)

with the abbreviation

8(t) = (N0 + 1)e−iω0t +N0eiω0t . (11)

�ac = eEacd/h̄ is the Bloch frequency of the ac field. A finite lifetime of the discrete energy
states is accounted for in equation (10) by a phenomenological parameters. In deriving
equation (10) we profited from the fact that the Green functionP in equation (3) factorizes
with respect to thek⊥- andkz-dependencies. Effects exerted by the electric fields during the
scattering process are described by the function

Pz±(k′z, kz|t ′, t) =
∑
qz

Pz

(
k′z +

qz

2
, kz ± qz

2
, qz

∣∣∣∣t ′, t) (12)

which depends on two time arguments. The remainingkz-, k′z-integrals in equation (10) are
easily calculated using equation (3) and recalling the identity

1

2π

∫ 2π

0
dx exp[−i(lx + a sinx + b cosx)]

= eilϕzJl(
√
a2 + b2)×

{
(−1)l if a > 0

1 otherwise
(13)
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with

ϕz = arctan(b/a). (14)

The scattering termP lmn entering the kinetic equation (10) now simplifies considerably and
takes the form

P lmn =
4ω2

00

πh̄2l2Bd

∞∑
n′=0

f 0
0n′

∫ ∞
0

dt ′ e−st
′
Im
[
8(t ′)eiωct ′(n′−n)

]
F lm(t

′) (15)

where we used the definitions

F lm(t
′) = ω

2π

∫ 2π/ω

0
dt exp

(
−imωt − il

�ac

ω
sinωt

)
P l(t, t ′) (16)

and

P l(t, t ′) = eilϕz(t,t ′) 1

π

∫ π

0
dy sinyJl

(
1

h̄
siny|Z(t, t ′)|

)
×
{
(−1)l if ReZ > 0

1 otherwise.

(17)

In equation (17),Jl is the Bessel function and the complex functionZ(t, t ′) is expressed by a
time integral

Z(t, t ′) = |Z|eiϕz =
∫ t ′

0
dt ′′ exp

[
−i

(
�dct

′′ − �ac
ω

sinω(t − t ′′)
)]

= i
∞∑

k=−∞

Jk(�ac/ω)

�dc + kω
eikωt

[
e−i(�dc+kω)t ′ − 1

]
(18)

which has been calculated by considering equations (27) and (30) in the appendix. In equ-
ation (10) only thet ′-integral leads to poles associated with CSPP resonances. From equ-
ations (10) and (18), it is seen that CSPP resonances are expected to occur at the positions
l�dc + nωc +mω ± ω0 = 0, with l,m, andn being integers.

Throughout, we refer to a dc electric field strength, at which WS localization prevails
(�dcτ > 1). In this case, a perturbational treatment of scattering has become a suitable
tool [1] for determining the high-field transport properties. Under the condition�dcτ > 1,
it is sufficient to retain only the time-averaged zeroth Fourier components of the distribution
function in the scattering integral, which implies replacing the numbersf l

′
m′n′ by δl′,0δm′,0f 0

0n′

there. As shown in the appendix, the resulting kinetic equation can be solved exactly. The
solution has the form

f l0n =
∞∑

m=−∞

P lmn

il�dc
Slm (19)

with

Slm =
∞∑

k=−∞
Jk−m

(
l
�ac

ω

)
Jk

(
l
�ac

ω

)
il�dc + 1/τac

i(l�dc + kω) + 1/τac
. (20)

In equation (20), we introduced a phenomenological scattering timeτac, which prevents the
distribution function from diverging at the resonance positions�dc = kω. If there were no ac
electric field (�ac → 0), we would have from equation (20)Slm = δm,0. The solution (19) of
equation (10) fulfils the important requirement that in the limit�ac → 0 (but�dc 6= 0) the non-
equilibrium distribution function(f ln)dc = P l0n/il�dc for a biased electron system is recovered
and not the equilibrium distribution as in all former theoretical approaches [19–26]. Once the
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distribution function has been determined from the kinetic equation, it is straightforward to
calculate the current density from

jz(t) = e

h̄V

∑
k

∂ε(k)

∂kz
f (k|t). (21)

Inserting the tight-binding dispersion relation as well as equations (4) and (7) into this equation,
we arrive at

jz = ens1

4h̄

1

2i

∞∑
n=0

(f −1
0n − f 1

0n). (22)

For the simple cosine energy band only thel = ±1 elements of the distribution functionf l0n
enter the expression for the current density. To proceed further in calculating the current, the
formal solution (19) is inserted into equation (22). From equation (15) it is seen that the matrix
elementP lmn itself depends on the componentsf 0

0n of the lateral distribution function. For
simplicity we will not go into a detailed analysis of the lateral carrier heating within the wells
but will make use of the Boltzmann distribution function [4]

f 0
0n = 2 sinh

(
h̄ωc

2kBT

)
exp

[
− h̄ωc
kBT

(n + 1/2)

]
(23)

which allows us to calculate then′-sum in equation (15) analytically. For the current density
we obtain the following final expression:

jz = ens1

h̄�dc

m∗ω0ωc0

πh̄3d

1− exp(−h̄ωc/kBT )
1− exp(−h̄ω0/kBT )

∞∑
n=0

∞∑
m=−∞

[
ReQ1

mn ReS1
m − ImQ1

mn Im S1
m

]
(24)

with

Q1
mn =

∫ ∞
0

dt ′ e−st
′
Im

[
e−inωct ′(e−iω0t

′
+ e−h̄ω0/kBT eiω0t

′
)

1− e−h̄ωc/kBT eiωct ′

]
F 1
m(t
′). (25)

The current density (24) is composed of two different contributions, which correspond to
the two transport channels opened up by carrier scattering or delocalization induced by the
radiation field. When the ac electric field vanishes (�ac = 0), only the first current contribution
remains on the right-hand side of equation (24). This term describes scattering-mediated carrier
transport in the presence of a strong dc electric field, characterized by the antisymmetric part
(∼ReQ1

0n) of the non-equilibrium distribution function. A radiation field gives rise to an
additional current contribution (the second term on the right-hand side of equation (24)),
which results from photon-mediated delocalization of carriers. This term, which is negative,
describes the effect whereby Bloch-oscillating carriers absorb energy from the radiation field
to travel against the field direction [14]. If this current component is small compared to the
scattering-induced part, it is sufficient to retain only them = 0 term [29] in them-sum of
equation (24).

3. Numerical results and discussion

Negative current and Bloch–photon resonances at�dc = kω have been observed at a
comparatively small dc bias [15]. However, at low dc electric fields, our approach is not
applicable, as we used only the lateral component of the distribution function in the collision
integral, which results in an asymptotic 1/Edc dependence of the current. We will focus on high
electric and magnetic field strengths, where pronounced resonance structures are predicted to
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appear in the current density unless they are smeared out by collisional broadening. For the
parameters used in our numerical calculation, the results are dominated by them = 0 term in
equation (24).
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Figure 1. The electric field dependence of the current density measured in units ofjz0 =
ens1m

∗ω00/πh̄
4d for �ac/ω = 0 (dashed curve) and�ac/ω = 0.5 (solid curve). We used the

following parameters:1/h̄ω0 = 1, h̄ω0/kBT = 5, ω/ω0 = 0.2, andH = 20 T, and introduced
two phenomenological broadening parameters 1/ω0τdc = 0.07, 1/ω0τac = 0.05, whereτdc = 1/s
is the relaxation time of the dc transport. The SL period isd = 10 nm. Vertical solid and dashed
lines mark the positions of cyclotron–Stark–phonon resonances. CSPP resonances are denoted by
arrows.

Numerical results for the electric field dependence of the current density are shown in
figure 1 for�ac/ω = 0 (dashed curve) and�ac/ω = 0.5 (solid curve). If there were no THz
field (dashed curve), pronounced electro-phonon resonances would appear, which are marked
by vertical solid lines. These resonances are strongly enhanced by a magnetic field (for fig-
ure 1 we usedH = 20 T). In addition, minor peaks are observed at cyclotron–Stark–phonon
resonance positions, marked by vertical dashed lines. As illustrated by the solid curve, a THz
radiation field rounds off these sharp resonance structures. To what extent the radiation field
is effective in smoothing current peaks depends on the value of the dc bias. An intense THz
field leads also to the appearance of additional current maxima at CSPP resonance positions,
marked by arrows and numbers (l, m, n) (in figure 1), for which the resonance condition
l�dc = mω + nωc + ω0 is fulfilled. The proportion of new current anomalies that arise
depends sensitively on the dc electric field. CSPP resonances can easily be discriminated from
Bloch–photon-type resonances at�dc = kω, because in the former the frequencyω0 of polar-
optical phonons is involved. The above-mentioned peculiarities in theI–V characteristic result
from ICFEs of the ac field. For the parameters used in our calculation, the ac-field-induced
current component, described by the second term on the right-hand side of equation (24), is
negligibly small.

A second example is shown in figure 2, where the dashed curve is again the reference
curve for�ac/ω = 0, but this time for a smaller miniband width (1/h̄ω0 = 0.5). In addition,
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Figure 2. As figure 1, but for�ac/ω = 0 (dashed curve) and�ac/ω = 2 (thick solid curve). In
addition, we used1/h̄ω0 = 0.5. The thin solid curve has been calculated by neglecting the ICFEs
of the THz field.

the intensity of the THz field is larger (�ac/ω = 2 for the thick solid curve). The application
of such an intense laser field leads to a negative current density and to an almost complete
disappearance of electro-phonon resonances marked by vertical solid lines. New maxima
appear at CSPP resonance positions indicated by arrows and the numbers (l, m, n). Under
the participation of the photon field, the cyclotron–Stark–phonon resonance marked by the
vertical dashed line is considerably enhanced. All of these new pronounced structures in the
I–V characteristic are due to ICFEs. This is shown by the thin solid curve, which has been
calculated without taking into account the influence of the ac field on scattering [14]. The
classical treatment of the THz field reproduces theI–V dependence at comparatively low
electric fields, where the current becomes negative, but does not account for the appearance of
pronounced CSPP resonances, which are due to quantum-mechanical effects.

The magnetic field dependence of the current density is depicted in figure 3 for�ac/ω = 0
(dashed curve) and�ac/ω = 1 (solid curve). The positions of cyclotron–Stark–phonon
resonances are shown by vertical solid (l = 0), dashed (l = 1), and dash–dotted (l = 2) lines.
For the set of parameters used in this calculation, a number of weak CSPP resonances emerge
in the current density, marked by arrows and numbers (l, m, n), which fulfil the resonance
conditionnωc = l�dc + mω + ω0. An observation of these new resonances would require
SL samples for which the collisional broadening is extremely small. Pronounced resonance
peaks in the current density, which occur when�ac = 0 (dashed curve), become considerably
smoother when an intense ac field is applied to the SL. It is seen from figure 1 that whether
the current is reduced or enhanced by switching on the ac field depends on the dc electric field
strength. For the dc electric field that we used in figure 2 (Edc = 35.4 kV cm−1 or�dc = ω0),
the ac field leads to a current reduction, the extent of which increases with increasing magnetic
field. At low intensities of the THz field, the predicted CSPP resonance peaks in the current
density are less pronounced than the already-studied cyclotron–Stark–phonon resonances.
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Figure 3. The magnetic field dependence of the current density measured in units ofjz0 =
ens1m

∗ω00/πh̄
4d for �ac/ω = 0 (dashed curve) and�ac/ω = 1 (solid curve). We used the

set of parameters1/h̄ω0 = 1, h̄ω0/kBT = 1, ω/ω0 = 0.2, andEdc = 35.4 kV cm−1. The
broadening parameters are the same as in figure 1. Vertical lines mark the positions of cyclotron–
Stark–phonon resonances. CSPP resonances are denoted by arrows.

The collisional broadening plays an exceptional role in the system considered in which
the energy spectrum is discrete due to WS and Landau quantization. Without any lifetime
broadening, theI–V characteristics are given by a set ofδ-functions located at numerous
resonance positions. In our approach a smoothI–V characteristic is obtained by introducing
phenomenological broadening parameters related to the dc- and ac-field effects. Depending on
the values of these parameters, the predicted new quantum-mechanical resonances can appear
or be completely smeared out. This is a serious disadvantage of our calculation. Reliable
quantitative results can only be derived when both ICFEs and collisional broadening are
accounted for within the same microscopic quantum-mechanical approach. Further progress
will be related to studying quantum transport in SLs within this framework.

4. Summary

We treated the influence of a strong THz radiation field on the quantum transport of carriers in
the lowest miniband of a SL subject to quantizing dc electric and magnetic fields. All external
fields are applied parallel to the SL axis. ICFEs of all fields as well as the heating of the lateral
carrier motion are taken into account within a quantum-kinetic approach. The radiation field
gives rise to new CSPP resonances occurring when the four frequencies�dc,ωc,ω, andω0 fulfil
the resonance conditionl�dc + nωc +mω ± ω0 = 0 (wherel, n,m are integers). Depending
on the intensity of the THz field, even pronounced structures are predicted to appear at these
resonance positions both in the electric and magnetic field dependences of the current density.

To our knowledge, electro-phonon resonances have not been reported in SL transport
experiments until now. Nevertheless, enhanced LO-phonon-assisted inter-Landau-level tunnel
peaks have been observed in recent experiments on a GaAs/AlGaAs triple-barrier tunnel
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diode [39]. It was also possible to study elastic cyclotron–Stark transport anomalies for
rather different SLs [6, 10]. An observation of the predicted new quantum-mechanical CSPP
transport resonances requires SLs in which collisional broadening is extremely small. A further
prediction of our approach is that existing strong current maxima at cyclotron–Stark–phonon
resonance positions should be strongly suppressed by an intense THz field.

Appendix

In this appendix we will derive the exact formal solution of the kinetic equation (10). To that
end, equation (4) is used to reintroduce the time-dependent distribution functionf ln(t), which,
according to equation (10), satisfies the first-order differential equation

df ln(t)

dt
+ i

dAl(t)

dt
f ln(t) = P ln(t) (A.1)

with

Al(t) = l�dct +Aac(t) Aac(t) = l �ac
ω

sinωt. (A.2)

Equation (26) is easily solved. We obtain

f lm(t) = e−iAl(t)

[
C +

∫ t

0
dt ′ P ln(t

′)eiAl(t ′)
]

(A.3)

where the periodicity conditionf ln(t + 2π/ω) = f ln(t) is used to determine the integration
constantC:

C =
∫ 0

−2π/ω
dτ P ln(τ )e

iAl(τ )/(1− e−2π il�dc/ω). (A.4)

The remaining integrals over time variables are calculated using

eiAac(t) =
∞∑

k=−∞
Jk

(
l
�ac

ω

)
eikωt . (A.5)

The final result is

f ln(t) = e−iAl(t)
∞∑

k,m=−∞
P lmnJk

(
l
�ac

ω

)
ei(l�dc+(k+m)ω)t

i(l�dc + (k +m)ω)
. (A.6)

Applying equation (30) again, we obtain

f l0n =
∞∑

k,m=−∞
P lmn

Jk−m(l�ac/ω)Jk(l�ac/ω)
i(l�dc + kω)

(A.7)

for the time-averaged components of the distribution function. To avoid divergencies appearing
on the right-hand side of equation (32) atl�dc + kω = 0, we introduce a phenomenological
scattering timeτac and arrive at equations (19) and (20).
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